
[Herrenkrugsteg Magdeburg]

Advanced Topics in Feature-Model Analysis

Thesis Topics and Software Projects

August 24, 2025

Elias Kuiter1

University of Magdeburg1

Advanced Topics in Feature-Model Analysis

1. Introduction

2. Background

3. Thesis Topics

How Accurate Are Feature Models Extracted From KConfig Specifications? (B/M)

CNF Transformation of Feature Models: A White-Box Analysis (B/M)

CNF Transformation of Feature Models: Down the Rabbit Hole (B/M)

4. Software Projects

torte – Fully Automated Feature-Model Experiments in Bash (P)

clausy – Robust and Efficient CNF Transformation in Rust (P)

variED-NG – Collaborative Feature Modeling in TypeScript (P)

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects 2

1. Introduction

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 3

Contact me:

kuiter@ovgu.de

About Me . . .

• until 2020: M.Sc. Computer Science in Magdeburg

• since 2021: PhD student in Magdeburg supervised by Gunter Saake
(Magdeburg) and Thomas Thüm (Braunschweig)

Research Interests

• generally: software variability, quality, and evolution

• specifically: feature-model and product-line analysis

• i.e., software engineering ∩ automated reasoning

You . . .

• are interested in working on cutting-edge research tools and topics

• successfully completed our product-line course

• want to write your thesis in English or German

B: Bachelor thesis — M: Master thesis — P: software project

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 1. Introduction 4

https://elias-kuiter.de/
mailto:kuiter@ovgu.de
https://www.dbse.ovgu.de/Lehre/Wintersemester/Bachelor+und+Master/SPL.html

2. Background

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Background 5

Modeling Features and their Dependencies

Feature Models

• tree models features

• cross-tree constraints model
dependencies

• solver-based analyses on the
configuration space

Graph

Node

Labeled Colored

Edge

Directed Undirected Hyper

¬(Directed ∧ Undirected)

Hyper → Undirected

Directed ↔/ (Undirected ∧ Hyper)

Feature

Mandatory

Optional

The Linux Kernel

• ≈ 20,000 features

• > 101,700 products

• 114 dead features [2013]

• 151 reverse
dependency bugs [2019]

. . . and many other systems!

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Background 6

https://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
https://paulgazzillo.com/papers/esecfse21.pdf
https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Analyzing Feature Models with SAT and #SAT Solvers

KConfig Specifications

config D
bool ”Directed”
depends on !U

config U
bool ”Undirected”
depends on !D

config H
bool ”Hyper”
select U

→

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 2. Background 7

3. Thesis Topics

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Thesis Topics 8

How Accurate Are Feature Models Extracted From KConfig Specifications? (B/M)

Problem

• KConfig extractors are used to extract feature
models from KConfig specifications

• it is currently mostly unknown how accurately
extractors construct configurations

• preliminary results are inconclusive [OGB+:TR19]

Goals

• evaluate construct validity of KConfig extractors

• is a satisfiable assignment really a valid KConfig
configuration, and vice versa?

• is there a loss when doing a roundtrip transfor-
mation (to KConfig and back + vice versa)?

• how does KConfig behave when faced . . .

• . . . with a partial configuration?
• . . . with an invalid configuration?

• how are non-Boolean features handled?

• does y/m make a difference for tristate?

Requirements

• working with C- and Bash-based KConfig tooling

• evaluation design, reading literature

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Thesis Topics 9

https://apps.cs.utexas.edu/apps/sites/default/files/tech_reports/2018Kconfig_0.pdf

CNF Transformation of Feature Models: A White-Box Analysis (B/M)

Problem

• CNF transformation tools have a measurable
impact on solver performance [Kuiter et al. 2022]

• there are many shades of CNF transformations,
only few of which have been evaluated on a large
corpus of models (black-box analysis e)

• a white-box analysis g is missing, which con-
siders CNF parametrization and solver internals

• thus, we may better understand the influence of
CNF and choose good parameters

J

Goals

• extend our Rust tool clausy with a configurable
CNF transformation (i.e., Tseitin threshold)

• instrument the C SAT solver kissat to monitor
solver internals (i.e., pre-/inprocessing)

• evaluate performance of clausy + kissat for
many parametrizations on a large corpus

• evaluate the minimum Tseitin threshold as a
measure for feature-model complexity

Requirements

• considerable experience with Rust and C

• evaluation design, reading literature

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Thesis Topics 10

https://dl.acm.org/doi/10.1145/3551349.3556938

CNF Transformation of Feature Models: Down the Rabbit Hole (B/M)

On interest, we can develop these into more concrete topics.

Problems

are the differences between CNF transformations
due to algorithms or implementations?

how do equivalent phrasings of a CNF formula dif-
fer in solving performance? [BH:POS19, L:APAL24]

which CNF transformation is most efficient for
enumeration-based analyses? [MSS:SAT23]

Goals

cross-evaluate influence of CNF transformation al-
gorithms implemented in different tools

evaluate the influence of CNF scrambling on solver
performance, possibly establish a canonical CNF

evaluate the influence of CNF transformation algo-
rithms on t-wise sampling and AllSAT

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 3. Thesis Topics 11

https://easychair.org/publications/paper/HtqQ/open
https://www.sciencedirect.com/science/article/pii/S016800722400054X
https://iris.unitn.it/handle/11572/389369

4. Software Projects

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 4. Software Projects 12

torte – Fully Automated Feature-Model Experiments in Bash (P)

What is torte? [§/ekuiter/]

• a declarative workbench for reproducible
feature-model analysis experiments

• can extract, transform, and analyze feature mod-
els in a fully automated fashion

• draft, execute distribute, and adapt experiments
(without clone-and-own)

A Simple Experiment: Counting BusyBox

experiment-subjects() {
add-busybox-kconfig-history --from 1 36 0 --to 1 36 1

}
experiment-stages() {

clone-systems
extract-kconfig-models
transform-models-into-dimacs
solve-model-count --timeout 10

}

Goal

fix problems and implement new features from
roadmap (issue #1)
⇒ enabling new use cases for torte

Requirements

• experience with Bash programming

• some experience with Docker

• willing to write clean code in Bash :-)

o Q {

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 4. Software Projects 13

https://github.com/ekuiter/torte
https://github.com/ekuiter/torte/issues/1

clausy – Robust and Efficient CNF Transformation in Rust (P)

What is clausy? [§/ekuiter/]

• transforms feature-model formulas into conjunc-
tive normal form (CNF) for subsequent analysis

• improves comparability of transformation algo-
rithms, competes with state-of-the-art tools

• implements algorithms for advanced use cases

Some Examples: Clausify Feature-Model Formulas

simplify a given CNF
bin/clausy model.dimacs

read from standard input and count solutions
cat model.uvl | bin/clausy −.uvl to cnf tseitin count

prove model equivalence
! bin/clausy a.model b.model ’+(∗(−1 2) ∗(1 −2))’

to cnf tseitin satisfy &>/dev/null

Goal

fix problems and implement new features from
roadmap (issue #1)
⇒ enabling new use cases for clausy

Requirements

• programming experience in Rust

• interested in algorithm engineering

J

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 4. Software Projects 14

https://github.com/ekuiter/clausy
https://github.com/ekuiter/clausy/issues/1

variED-NG – Collaborative Feature Modeling in TypeScript (P)

What is variED? [§/ekuiter/variED]

• a research prototype for viewing and editing fea-
ture models in a collaborative, real-time fashion

• vision: “Google Docs” for feature modeling

• easily share models, teach modeling, . . .

Goal

• prototype is complex and currently defunct

• continue work on simplified fork variED-NG

• fix and improve the editor

Requirements

• experience with TypeScript + React/Redux

• interested in modern web development

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 4. Software Projects 15

https://github.com/ekuiter/clausy
https://github.com/ekuiter/variED-NG

Interested?

Contact me: kuiter@ovgu.de

§/ekuiter/

§/ekuiter/

mailto:kuiter@ovgu.de
mailto:kuiter@ovgu.de
https://github.com/ekuiter/clausy
https://github.com/ekuiter/torte

5. Archived Topics

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 17

These topics have already been assigned to or completed by another student.

They can give you an impression of what we have done in the past.

Some of these topics might also be suited for follow-up work.

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 18

Extracting Feature Models From Extended KConfig Specifications (B/M)

Problem

• currently, feature models cannot be extracted for
every project that uses KConfig specifications

• i.e., some projects use the Python-based parser
KConfigLib instead of a C implementation

• e.g., the feature model of the operating system
Zephyr can currently not be analyzed

Goals

• review usage of KConfigLib in Zephyr and other
projects in the system software domain

• investigate differences between KConfigLib

and the C parser used in Linux

• conceptualize and implement a solution for ex-
tracting feature models from KConfigLib (e.g.,
transform into Linux-compatible KConfig, or
adapt KClause to KConfigLib input)

• evaluate feasibility and performance + accuracy
of extracted models by comparing with KClause

Requirements

• reading literature and KConfig code

• experience with Python 3 and C

• wrangle with subtle KConfig syntax/semantics

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 19

The Impact of Clone-and-Own on Parsing KConfig Specifications (B/M)

Problem

• the C KConfig parser of Linux evolves over time,
slowly adding new syntax and semantics and
deprecating or fixing old constructs

• moreover, other projects tend to clone-and-own
the parser from Linux, leading to a variety of
implementations

• it is unknown which (distinct) KConfig imple-
mentations exist and how they came to be

• it is also unclear to which degree these imple-
mentations are compatible with each other, and
whether using an incorrect parser can threaten
the validity of research evaluations

Goals

• trace the genealogy of KConfig parsers (who
forked it when/why? with which adaptations?)

• evaluate backwards compatibility of the parser
in a given project (can a new parser extract an
old feature model? is the result accurate?)

• evaluate cross-compatibility of parsers

Requirements

• reading literature, code, and commit histories

• experience with C to compare implementations

• wrangle with subtle KConfig syntax/semantics

1

VR™

1 1 ···

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 20

Minimizing CNFs to Isolate Solver Bugs (B)

Problem

• CNFs of real-world feature models sometimes
uncover bugs even in production-grade (#)SAT
and SMT solvers

• e.g., in countAntom, sharpSAT/dSharp, Z3,
clausy, FeatJAR

• during development and maintenance of such
solvers, reducing problematic CNFs to a mini-
mum non-working example can facilitate finding
the causes of bugs, reporting them, and prevent-
ing future regressions

• however, this process is currently a manual task
and time-consuming

q

Goals

• identify fault oracles (e.g., solver crashes), re-
view reduction strategies (e.g., removing clauses
one-by-one, bisection, backtracking to avoid a
local minimum)

• implement a (semi-)automatic tool that repeat-
edly reduces clauses and literals in a faulty CNF
until it is minimal

• evaluate performance and compare with global
minimum (e.g., obtained manually)

Requirements

• algorithm design, reading literature

• potential challenges: generative effects, local
minima, choosing bugs to evaluate

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 21

A Dashboard for Evolving Variability in Open-Source Systems (P)

Problem

• torte fully automates feature-model analysis

• can be used to analyze latest Linux kernel

• but: no user-friendly frontend exists yet

Goal

• develop a web frontend for torte

• find appropriate visualizations

⇒ quick visualization of current state of variability
⇒ extension of previous research evaluation

Requirements

• experience with frontend development (e.g.,
HTML/CSS, React/Vue/Dash, . . .)

• backend experience not necessarily needed (e.g.,
assume a static CSV file over AJAX)

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 22

Evaluating an Extractor for KConfig-Based Feature Models (B)

Problem

• a new feature-model extractor, ConfigFix, has
recently been published

• however, it has not been compared to existing
extractors yet

Goal

• implement extraction of feature models with
ConfigFix in torte

• evaluate efficiency and accuracy on a large cor-
pus on feature models

Requirements

• good in bash programming

• work with ConfigFix, which is implemented in C

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 23

https://ieeexplore.ieee.org/document/9401969

Extracting Feature Hierarchies for KConfig-Based Feature Models (B)

Problem

• feature-model extractors for KConfig mostly ig-
nore the feature hierarchy

• tooling for extracting hierarchies is now defunct,
identification of feature parents in Kconfig is yet
under-researched

Goal

• extract a feature hierarchy from KConfig speci-
fications + evaluate accuracy

• and/or: reverse-engineer hierarchy from formula
+ compare with KConfig hierarchy

Requirements

• adjusting KConfig parser written in C

• adjust or implement a tool for reverse-
engineering

• c.f. Yaman 2023, Yaman et al. 2024

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 24

https://publikationen.bibliothek.kit.edu/1000162110
https://dl.acm.org/doi/10.1145/3634713.3634731

Feature-Model Analysis with SAT Solvers: A Journey Through Time (B)

Problem

• feature models grow more complex over time

• automated reasoning tools (e.g., SAT solvers)
get more efficient over time

• but: which development is faster? can SAT
solvers actually keep up?

[Photo: Laurent Simon]

Goal

• collect best SAT solvers of the last 20 years

• collect feature models from the last 20 years

• run selected feature-model analyses with solver
from year X on model of year X

• evaluate evolution of SAT solving performance
(cf. Moore’s law)

• see time leap challenge

Requirements

• methodology design, reading literature

• challenges: data availability and formats

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 25

https://www.labri.fr/perso/lsimon/research/glucose/
https://arxiv.org/abs/2008.02215

Previously Supervised Theses [full list available here]

• A Non-Clausal Slicing Algorithm for Feature Models (M)

• Efficiency of Projected Model Counting for Feature-Model Analysis (B)

Excerpts of feature models (so-called slices) allow for modularization and separation of concerns for software variability. However, calculating slices

is complex. For some applications, it is sufficient to know the size (i.e., the number of valid products) of a slice. Projected Model Counting

(PMC) is a new solver class that can directly determine the size of a slice without calculating it. The aim of this work is to evaluate the

applicability of PMC for feature model analysis. Tasks include to research PMCs and their functionality, apply PMC to feature models of various

sizes, and compare with slicing and subsequent #SAT calls.

• Evaluating the Efficiency of Hybrid CNF Transformations for Feature-Model Formulas (M)

For automated feature-model analysis, SAT and #SAT solvers are used. These expect the input formula to be in CNF (conjunctive normal form).

There are various methods to convert a formula into CNF. The aim of this work is to continue our existing research and conduct a detailed

comparison of the distributive transformation with the Tseitin and Plaisted-Greenbaum transformations, thereby drawing conclusions about when

to prefer which CNF transformation. Some aspects to consider are parameters for hybrid transformation, preprocessing in SAT solvers, and

multiple implementations for external validity.

• Configuration of Software Product Lines With Configuring Constraints via Feature Attributes (M)

• A Semi-Automated Release Management Process for Microservices (B)

• Reengineering of a Microservice Architecture: A Case Study on the PEGASOS System (M)

• System Tools’ Firmware Flashing Automation in a Complex Software/Hardware Environment (M)

Elias Kuiter Advanced Topics in Feature-Model Analysis – Thesis Topics and Software Projects – 5. Archived Topics 26

https://elias-kuiter.de/publications.php

	Introduction
	Background
	Modeling Features and their Dependencies
	Analyzing Feature Models with SAT and #SAT Solvers

	Thesis Topics
	How Accurate Are Feature Models Extracted From KConfig Specifications? (B/M)
	CNF Transformation of Feature Models: A White-Box Analysis (B/M)
	CNF Transformation of Feature Models: Down the Rabbit Hole (B/M)

	Software Projects
	torte – Fully Automated Feature-Model Experiments in Bash (P)
	clausy – Robust and Efficient CNF Transformation in Rust (P)
	variED-NG – Collaborative Feature Modeling in TypeScript (P)

	Archived Topics
	Extracting Feature Models From Extended KConfig Specifications (B/M)
	The Impact of Clone-and-Own on Parsing KConfig Specifications (B/M)
	Minimizing CNFs to Isolate Solver Bugs (B)
	A Dashboard for Evolving Variability in Open-Source Systems (P)
	Evaluating an Extractor for KConfig-Based Feature Models (B)
	Extracting Feature Hierarchies for KConfig-Based Feature Models (B)
	Feature-Model Analysis with SAT Solvers: A Journey Through Time (B)
	Previously Supervised Theses

