

OTTO VON GUERICKE
UNIVERSITÄT
MAGDEBURG

INF

FAKULTÄT FÜR
INFORMATIK

A Survey and Comparison of Industrial and Academic Research on the Evolution of Software Product Lines

Elias Kuiter
Student Conference 2019

Background

- *Software Product Lines* ...
 - allow systematic reuse of software artifacts for customizable and highly-configurable software
→ **mass customization of software**

Background

- *Software Product Lines* ...
 - are widely employed in embedded systems to satisfy diverse hardware requirements
→ reduced development costs, faster time-to-market
- BUT:
 - increased initial investment
 - testability?
 - maintainability?

HP DeskJet 2630 Wireless All-in-One ...
store.hp.com

HP® DeskJet 2655 All-in-One Printe...
store.hp.com

HP® DeskJet 2540 All-in-One Printer...
store.hp.com

HP® DeskJet 2130 All-in-One Printer ...
store.hp.com

HP DeskJet 2633 Wireless All-in-One Prin...
store.hp.com

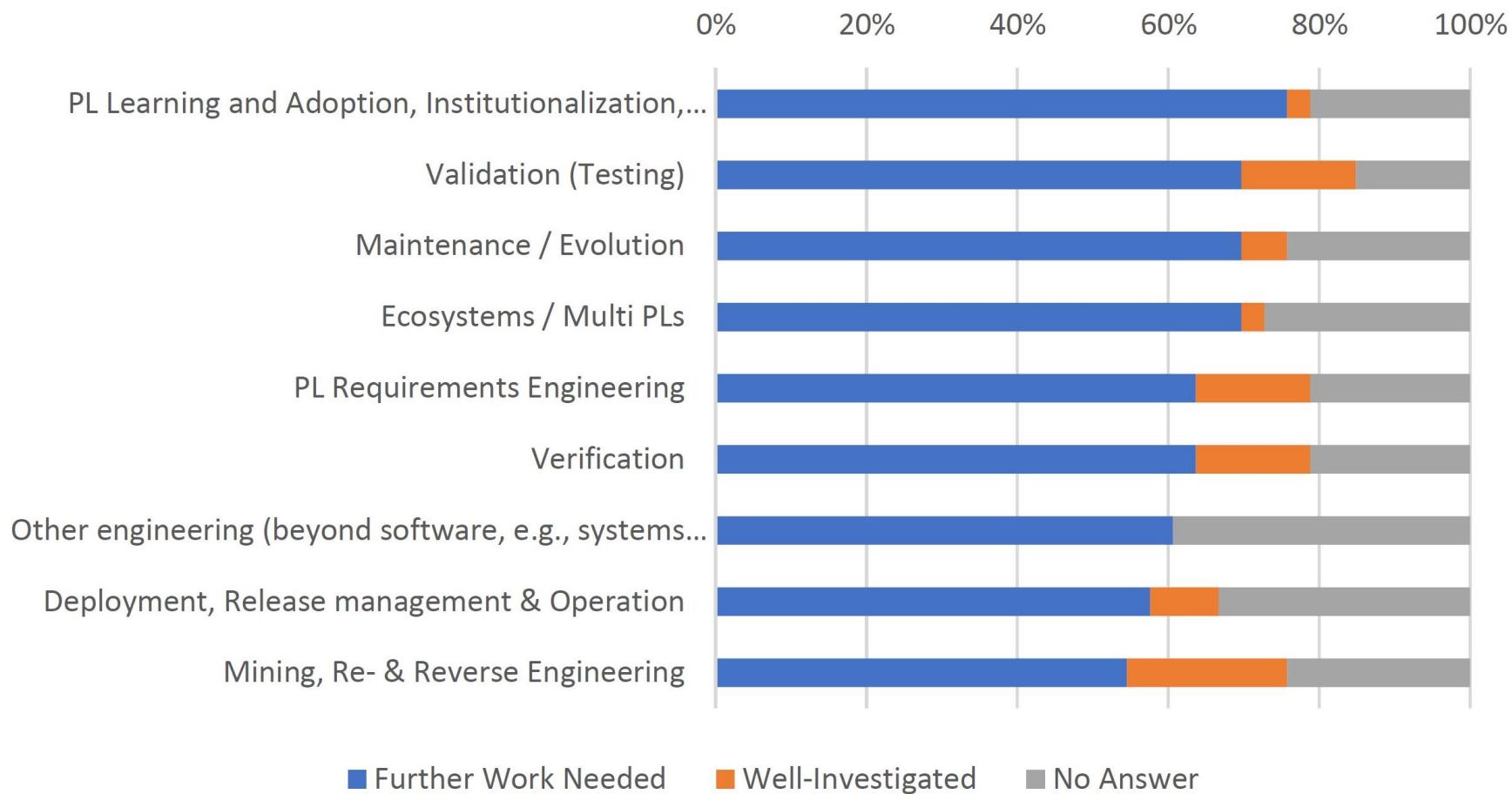
HP DeskJet 2135 All-in-One Ink ...
amazon.in

HP DeskJet 3639 All-in-One-Drucker - HP ...
store.hp.com

Amazon.com: HP Deskjet 1000 ...
amazon.com

HP® Deskjet 1051 All-in-One Printer (CH...
store.hp.com

HP DeskJet Ink Advantage 3835 All-in-O...
flipkart.com



HP DeskJet 2131 All-in-One Print...
noellemming.co.nz

HP Deskjet 2540 All-in-One Druc...
amazon.de

Motivation

Top 10 of 27 research interests among 33 SPL researchers and practitioners as of 2018

Contribution

- **survey and discussion of papers on SPL evolution**
- **comparison of works from academia and industry**
- **future directions for research on SPL evolution**

} in this presentation

Basic Terms

- **Software maintenance:**

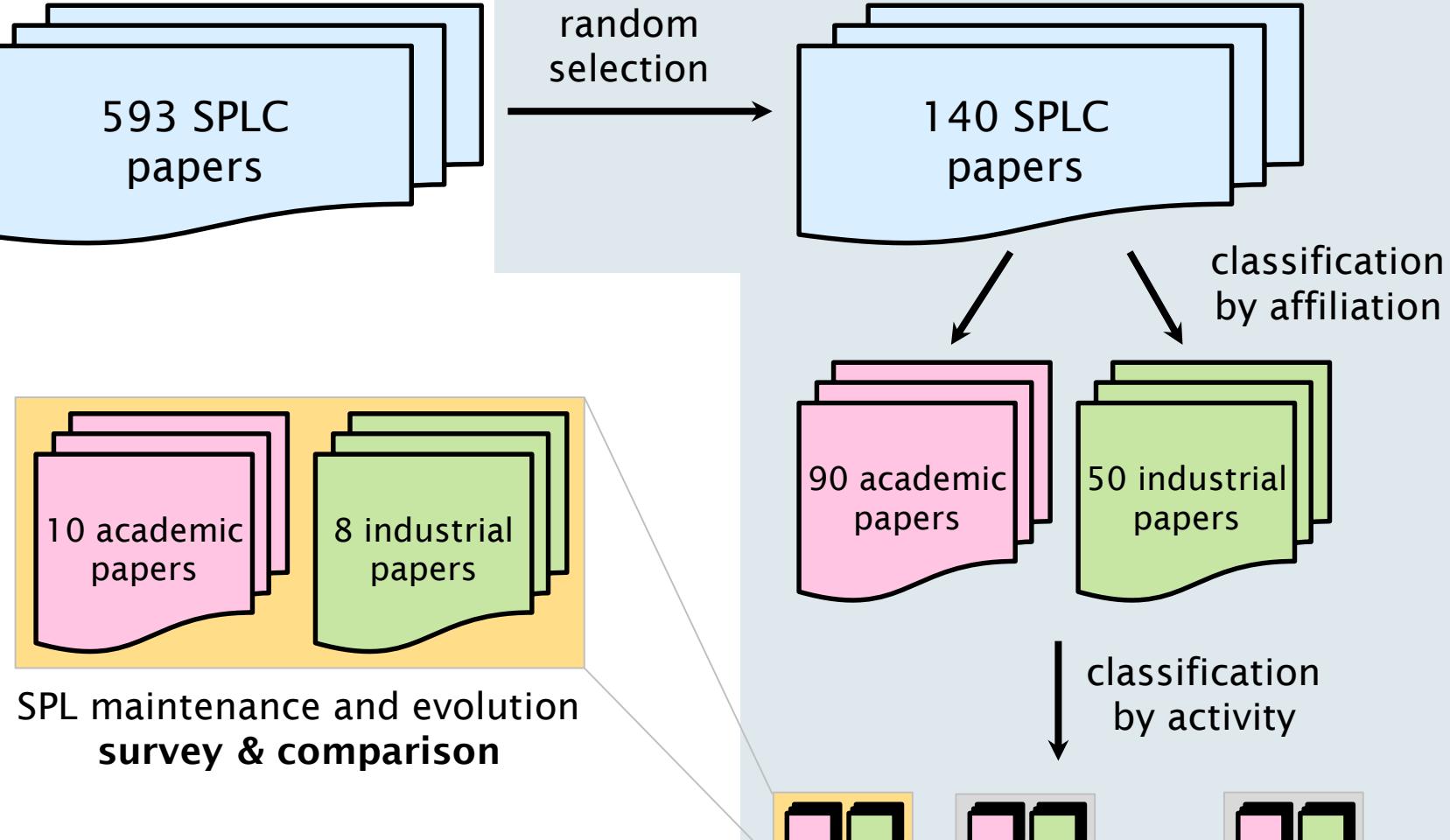
“modification of a software product **after delivery** to correct faults,
to improve performance or other attributes” IEEE Standard 1219

- **Software evolution:**

closely related to maintenance, but also includes **major changes**
(e.g., new functionality)

Basic Terms

- **SPL maintenance:**


“modification of a software product **after delivery** to correct faults,
to improve performance or other attributes” IEEE Standard 1219

- **SPL evolution:**

closely related to maintenance, but also includes **major changes**
(e.g., new functionality)

Methodology

Rick Rabiser, Klaus Schmid, Martin Becker, Goetz Botterweck, Matthias Galster, Iris Groher, and Danny Weyns. 2018. A Study and Comparison of Industrial vs. Academic Software Product Line Research Published at SPLC. 14–24.

Results

Academia

vs. Industry

Year	Authors
1998	Weiderman et al.
2001	Svahnberg and Mattson
2008	Dhungana et al.
2012	Seidl and Heidenreich
2012	de Oliveira et al.
2012	Rubin et al.
2013	Linsbauer et al.
2014	Quinton et al.
2015	Teixeira et al.
2016	Sampaio et al.

focus on **concepts**, methods, and technical advancements, e.g.

- evolution operators
- change impact analyses

Year	Authors
2000	Dager
2001	van Ommering
2002	van der Linden
2003	Karhinen et al.
2009	Pech et al.
2011	Vierhauser et al.
2012	Martini et al.
2013	Zhang et al.

focus on **economic/organizational** constraints and human factors, e.g.

- communication
- knowledge management

Academia vs. Industry

Year	Authors
1998	Weiderman et al.
2001	Svahnberg and Mattson
2008	Dhungana et al.
2012	Seidl and Heidenreich
2012	de Oliveira et al.
2012	Rubin et al.
2013	Linsbauer et al.
2014	Quinton et al.
2015	Teixeira et al.
2016	Sampaio et al.

purely academic
collaboration

Year	Authors
2000	Dager
2001	van Ommering
2002	van der Linden
2003	Karhin et al.
2009	Pech et al.
2011	Vierhauser et al.
2012	Martini et al.
2013	Zhang et al.

purely industrial
collaboration

the binary classification into *academia/industry* is not accurate
→ collaboration is happening!

Key Insights

successful SPL evolution requires **organizational changes**

→ in particular w.r.t. communication and knowledge management

the industry demands **stability and support guarantees**

→ change impact analyses / safe evolution are not adopted yet

researchers call for more publicly available **industrial case studies**

→ few long-term, empirical studies on SPL evolution

SPL erosion is a known, but rarely investigated problem

→ research dismisses removal of variability, which leads to erosion

advanced tooling leads to acceleration of code size and variability

→ may promote erosion, consider carefully

References

James Dager. 2000. Cummin's Experience in Developing a Software Product Line Architecture for Real-time Embedded Diesel Engine Controls. In Proceedings of the International Software Product Line Conference. ACM.

Thiago Henrique Burgos de Oliveira, Martin Becker, and Elisa Yumi Nakagawa. 2012. Supporting the analysis of bug prevalence in software product lines with product genealogy. In Proceedings of the International Software Product Line Conference. ACM.

Deepak Dhungana, Thomas Neumayer, Paul Grünbacher, and Rick Rabiser. 2008. Supporting evolution in model-based product line engineering. In Proceedings of the International Software Product Line Conference. ACM, 319–328.

Anssi Karhinen, Juha Kuusela, and Marco Sandrini. 2004. Software Architecture Helpdesk. In Software Product-Family Engineering, Frank J. van der Linden (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 422–428.

Lukas Linsbauer, E. Roberto Lopez-Herrejon, and Alexander Egyed. 2013. Recovering traceability between features and code in product variants. In Proceedings of the International Software Product Line Conference. ACM, 131.

Antonio Martini, Lars Pareto, and Jan Bosch. 2012. Enablers and inhibitors for speed with reuse. In Proceedings of the International Software Product Line Conference. ACM, 116.

Daniel Pech, Jens Knodel, Ralf Carbon, Clemens Schitter, and Dirk Hein. 2009. Variability Management in Small Development Organizations: Experiences and Lessons Learned from a Case Study. In Proceedings of the International Software Product Line Conference. ACM, 285–294.

Clément Quinton, Andreas Pleuss, Daniel Le Berre, Laurence Duchien, and Goetz Botterweck. 2014. Consistency checking for the evolution of cardinality-based feature models. In Proceedings of the International Software Product Line Conference. ACM, 122–131.

Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Managing forked product variants. In Proceedings of the International Software Product Line Conference. ACM, 156.

Gabriela Sampaio, Paulo Borba, and Leopoldo Teixeira. 2016. Partially safe evolution of software product lines. In Proceedings of the International Software Product Line Conference. ACM, 124–133.

Christoph Seidl and Florian Heidenreich. 2012. Co-Evolution of Models and Feature Mapping in Software Product Lines Categories and Subject Descriptors. In Proceedings of the International Software Product Line Conference. ACM, 76–85.

Mikael Svhahnberg and Michael Mattsson. 2001. Conditions and Restrictions for Product Line Generation Migration. In Proceedings of the International Software Product Line Conference, Vol. 6. ACM, 103.

Leopoldo Teixeira, Paulo Borba, and Rohit Gheyi. 2015. Safe evolution of product populations and multi product lines. In Proceedings of the International Software Product Line Conference. ACM, 171–175.

Frank van der Linden. 2002. Engineering Software Architectures, Processes and Platforms for System Families – ESAPS Overview. In Proceedings of the International Software Product Line Conference, Vol. 9. ACM.

Rob van Ommering. 2001. Roadmapping a Product Population Architecture. In Proceedings of the International Software Product Line Conference. ACM, 51–63.

Michael Vierhauser, Gerald Holl, Rick Rabiser, Paul Grünbacher, Martin Lehofer, and Uwe Stürmer. 2011. A deployment infrastructure for product line models and tools. In Proceedings of the International Software Product Line Conference. ACM, 287–294.

Nelson Weideman, John Bergey, Dennis Smith, and Scott Tilley. 1998. Can Legacy Systems Beget Product Lines?. In Proceedings of the International Software Product Line Conference, Vol. 9. ACM, 242–242.

Bo Zhang, Martin Becker, Thomas Patzke, Krzysztof Sierszecki, and Juha Erik Savolainen. (2013). Variability evolution and erosion in industrial product lines: a case study, 168–177.